Binary Systems Containing Hydrocarbons

Note II. Miscibility Gaps in the Nitromethane + Alkanes Systems

Mario Rolla, Paolo Franzosini, Riccardo Riccardi, and Luigi Bottelli

Institute of Physical Chemistry, University of Pavia, Italy

(Z. Naturforschg. 22 a, 48-53 [1967]; received 23 September 1966)

The miscibility gaps (which can be represented through a unique generalized curve on the $T_{\rm d}/T_{\rm max}$ vs. z plane) in the binary liquid systems of nitromethane with $13\,({\rm C}_5-{\rm C}_9)$ -alkanes have been measured. Moreover, it has been shown that for the title systems and for those of MeOAc or MeOH with alkanes the temperatures $T_{\rm max}$ obey a simple additive rule, at least as a first approximation.

Note I of this series ¹ was dealing with miscibility gaps (MG's) in liquid binary mixtures of a number of alkanes with methylacetate (MeOAc): in the present paper the investigation has been extended to mixtures with nitromethane (MeNO₂).

All chemicals (MeNO $_2$ C. Erba RP and alkanes Fluka *puriss*.) have been dried by flowing their vapours through a tube filled with $P_2O_5^2$. The freezing point we obtained for MeNO $_2$ was -29.1_5 °C, in agreement with the value (-29.2) tabulated by Utermark et al. 3 .

The visual method employed has been described elsewhere 2 .

Results and Discussion

1. In Table 1 the compositions of the samples as $N_{\rm alkane}$, together with the corresponding demixing temperatures $t_{\rm d}$ °C (taken by shaking and slowly cooling), are summarized. All the demixing curves look more or less asymmetric in the $t_{\rm d}$ vs. $N_{\rm alkane}$ plane.

In Table 2 the coordinates $(N_{\rm alkane})_{\rm max}$ and $T_{\rm max}$ °K of the critical solution points (CSP's) are given: available data by previous authors are also reported for comparison.

As for n-alkanes, the temperatures $T_{\rm max}$ increase as the chain length increases, while at the same time

the maxima of the demixing curves are displaced towards increasing MeNO₂ concentrations.

Alkanes, having the same number $n_{\rm C}$ of carbon atoms, show not far different $(N_{\rm alkane})_{\rm max}$ values, which vary in a satisfactory agreement with the equation:

$$(N_{\rm alkane})_{\rm max} = 0.929 - 0.119_5 \, n_{\rm C} + 0.005_5 \, n_{\rm C}^2 \ \ (1)$$
 valid for $5 \le n_{\rm C} \le 9$.

According to Malesinska's procedure ⁶, the compositions of the mixtures have also been calculated as fractions z, by using the following asymmetry factors $q_2/q_1 \sim (N_{\rm MeNO2}/N_{\rm alkane})_{\rm max}$: 1.2 for C₅-, 1.3₅ for C₆-, 1.8 for C₇-, 2.0₅ for C₈- and 2.3 for C₉-alkanes. By plotting the experimental data on the $(T_d/T_{\rm max}, z)$ plane, the MG's concerning the 13 investigated systems can be represented through a unique generalized demixing curve, symmetric with respect to z=0.5 (see Fig. 1).

2. Tatevskii et al. 8 have verified for a number of physico-chemical properties (P) of the alkanes the validity of the simple equation:

$$P = \sum_{i=0}^{3} n_i p_i + \sum_{i \le j=1}^{4} n_{ij} p_{ij}, \qquad (2)$$

where n_i and n_{ij} respectively are the number of the C-H bonds type C_i-H and the number of the C-C bonds type C_i-C_j in the molecule; p_i and p_{ij}

- ¹ M. Rolla, P. Franzosini, R. Riccardi, and L. Bottelli, Z. Naturforschg. **21** a, 601 [1966].
- ² P. Franzosini, Z. Naturforschg. 18 a, 224 [1963]. P. Franzosini, R. Riccardi, and M. Sanesi, Ric. Sci. 35 (II-A), 700 [1965].
- ³ W. Utermark and W. Schicke, Schmelzpunkttabellen organischer Verbindungen, 2. Aufl., F. Vieweg, Braunschweig 1963.
- ⁴ A. W. Francis, Liquid-liquid equilibriums, Intersci. Publ., 230 [1963].
- ⁵ A. W. Francis, Critical Solution Temperatures, Adv. Chem. Ser. 31, edited by Am. Chem. Soc. in 1961.
- ⁶ B. Malesinska, Bull. Acad. Pol. Sci., Sér. Sci. Chim. 8, 53 [1960].
- ⁷ For the (MeNO₂+2,2,5-Trimethylhexane)-system we also measured the monotectic temperature (-29.5 °C).
- ⁸ V. M. Tatevskii, V. A. Benderskii, and S. S. Yarovoi, Rules and Methods for Calculating the Physico-Chemical Properties of Paraffinic Hydrocarbons, Pergamon Press, London 1961.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Isopentane n-Hexane	0.160 0.173 0.224 0.235 0.302 0.322 0.407 0.442 0.472 0.511 0.586 0.628 0.693 0.798	77.7 80.9 89.4 90.8 94.8 95.2 96.1 96.2 96.2 96.1 95.1 94.4 90.5 81.3	2,3-Dimethylbutane	0.108 0.137 0.227 0.241 0.357 0.477 0.531 0.539 0.597 0.655 0.704 0.718 0.745	71.4 78.7 91.8 93.2 96.1 96.1 95.4 95.5 93.9 91.3 88.6 87.5
	0.173 0.224 0.235 0.302 0.322 0.407 0.442 0.472 0.511 0.586 0.628 0.693 0.798	80.9 89.4 90.8 94.8 95.2 96.1 96.2 96.1 95.1 94.4 90.5		0.137 0.227 0.241 0.357 0.477 0.531 0.539 0.597 0.655 0.704 0.718	78.7 91.8 93.2 96.1 96.1 95.4 95.5 93.9 91.3 88.6 87.5
n-Hexane	0.224 0.235 0.302 0.322 0.407 0.442 0.472 0.511 0.586 0.628 0.693 0.798	89.4 90.8 94.8 95.2 96.1 96.2 96.2 96.1 95.1 94.4 90.5		0.227 0.241 0.357 0.477 0.531 0.539 0.597 0.655 0.704 0.718	91.8 93.2 96.1 96.1 95.4 95.5 93.9 91.3 88.6 87.5
n-Hexane	0.235 0.302 0.322 0.407 0.442 0.472 0.511 0.586 0.628 0.693 0.798	90.8 94.8 95.2 96.1 96.2 96.2 96.1 95.1 94.4 90.5		0.241 0.357 0.477 0.531 0.539 0.597 0.655 0.704 0.718	93.2 96.1 96.1 95.4 95.5 93.9 91.3 88.6 87.5
n-Hexane	0.302 0.322 0.407 0.442 0.472 0.511 0.586 0.628 0.693 0.798	94.8 95.2 96.1 96.2 96.2 96.1 95.1 94.4 90.5		0.357 0.477 0.531 0.539 0.597 0.655 0.704 0.718	96.1 96.1 95.4 95.5 93.9 91.3 88.6 87.5
n-Hexane	0.322 0.407 0.442 0.472 0.511 0.586 0.628 0.693 0.798 0.151	95.2 96.1 96.2 96.2 96.1 95.1 94.4 90.5		0.477 0.531 0.539 0.597 0.655 0.704 0.718	96.1 95.4 95.5 93.9 91.3 88.6 87.5
n-Hexane	0.407 0.442 0.472 0.511 0.586 0.628 0.693 0.798 0.151	96.1 96.2 96.2 96.1 95.1 94.4 90.5		0.531 0.539 0.597 0.655 0.704 0.718	95.4 95.5 93.9 91.3 88.6 87.5
n-Hexane	0.442 0.472 0.511 0.586 0.628 0.693 0.798	96.2 96.2 96.1 95.1 94.4 90.5		0.539 0.597 0.655 0.704 0.718	95.5 93.9 91.3 88.6 87.5
n-Hexane	0.472 0.511 0.586 0.628 0.693 0.798	96.2 96.1 95.1 94.4 90.5		0.597 0.655 0.704 0.718	93.9 91.3 88.6 87.5
n-Hexane	0.472 0.511 0.586 0.628 0.693 0.798	96.2 96.1 95.1 94.4 90.5		$0.655 \\ 0.704 \\ 0.718$	$91.3 \\ 88.6 \\ 87.5$
n-Hexane	0.511 0.586 0.628 0.693 0.798	96.1 95.1 94.4 90.5		$0.655 \\ 0.704 \\ 0.718$	$91.3 \\ 88.6 \\ 87.5$
n-Hexane	0.586 0.628 0.693 0.798	95.1 94.4 90.5		$0.704 \\ 0.718$	$88.6 \\ 87.5$
n-Hexane	0.628 0.693 0.798	94.4 90.5		0.718	87.5
n-Hexane	0.693 0.798 0.151	90.5			
n-Hexane	0.798 0.151			0.745	85.4
n-Hexane	0.151	81.3			00.4
n-Hexane		1	77	0.140	00 =
1-Hexane		01.6	n-Heptane	0.140	99.5
		91.6		0.247	107.2
	0.180	95.0		0.315	107.8
	0.273	101.1		0.325	107.8
	0.303	101.7		0.443	107.4
	0.408	102.2		0.530	105.4
	0.429	102.2		0.000	100.1
			9.4 Divertheles	0.102	0= =
	0.507	101.6	2,4-Dimethylpentane		85.7
	0.510	101.6		0.124	90.5
	0.512	101.4		0.161	97.3
	0.621	98.6		0.255	102.8
	0.685	95.4		0.314	103.3
	0.789	84.5		0.404	103.3
	0.709	04.0		0.467	102.8
35 3 1	0.000	-10			
2-Methylpentane	0.096	71.9		0.558	100.5
	0.154	88.0		0.642	96.5
	0.230	97.2		0.783	82.5
	0.255	97.9			
	0.343	100.4	n-Octane	0.087	98.0
			II-Octane	0.093	
	0.408	100.4			100.1
	0.414	100.5		0.131	107.6
	0.425	100.3		0.178	111.9
	0.542	99.4		0.212	113.1
	0.583	98.4		0.264	113.9
	0.608	97.5		0.272	113.9
	0.608	97.2		0.375	113.8
	0.712	90.7		0.446	112.9
	0.797	82.9		0.544	110.0
				0.639	104.0
-Methylpentane	0.128	77.1		0.756	92.2
J - F	0.198	91.9			
	0.215	94.0	2,2,4-Trimethylpentane	0.132	96.0
			2,2,1-11memyrpemane	$0.132 \\ 0.231$	103.6
	0.255	96.5			
	0.361	98.5		0.314	104.5
	0.459	98.5		0.398	104.3
	0.522	97.9		0.509	102.4
	0.652	93.7		0.531	101.7
	0.672	93.3		0.594	98.9
	0.680	92.2		0.001	30.3
			9.9.4 Their 11.1	0.109	00.4
	0.822	75.7	2,3,4-Trimethylpentane	0.103	89.4
				0.113	92.0
,2-Dimethylbutane	0.085	59.5		0.155	98.8
,	0.171	85.3		0.174	100.7
	0.267	94.7		0.256	103.9
		95.9		$0.230 \\ 0.379$	104.2
	0.303				
	0.381	96.6		0.468	103.3
	0.483	96.4		0.469	103.4
	0.508	96.5		0.603	98.9
	0.559	95.1		0.604	99.1
	0.617			0.683	93.5
		93.5			
	$0.729 \\ 0.812$	86.9 77.7		0.697	92.2

Table 1.

Alkane	$N_{\mathtt{alkane}}$	$t_{ m d}$ °C
n-Nonane	0.054	94.8
	0.073	103.2
	0.110	113.1
	0.151	117.5
	0.259	120.6
	0.296	120.6
	0.413	119.6
	0.455	118.7
	0.575	112.1
	0.704	101.0
	0.771	93.6

Alkane	$N_{ m alkane}$	$t_{ m d}$ °C
2,2,5-Trimethylhexane	0.070	90.4
, ,	0.138	106.2
	0.210	110.3
	0.305	110.8
	0.384	110.5
	0.424	109.9
	0.470	109.0
	0.546	105.9
	0.644	99.5
	0.722	91.6

Table 1. Systems of nitromethane with alkanes.

A.11	This paper		Previous Authors			
Alkane	$(N_{ m alkane})_{ m max}$	$T_{ m max}{}^{\circ}{ m K}$	$(N_{ m alkane})_{ m max}$	$T_{ m max}{}^{\circ}{ m K}$	Ref.	
Isopentane	0.46	369.4	_	305.5	4	
n-Hexane		375.4	_	333.2 ?	5	
			_	379.2	5	
			0.3775	375.55	6	
2-Methylpentane	$0.41_5 \pm 0.01$	373.6		_	-	
3-Methylpentane		371.8		_	_	
2,2-Dimethylbutane		369.9	_	_	-	
2,3-Dimethylbutane		369.4	_	_	_	
n-Heptane		381.0	_	388.2	5	
1	0.36 ± 0.005		0.350	381.45	6	
2,4-Dimethylpentane		376.6	-	_	-	
n-Octane		387.2	_	> 293	5	
			0.315	387.65	6	
2,2,4-Trimethylpentane	0.33 ± 0.01	377.8		380.2	5	
			0.335	378.20	6	
2,3,4-Trimethylpentane		377.5	_	_	_	
n-Nonane		393.8	_	> 358	5	
	$0.30_5 \pm 0.005$		0.280	393.45	6	
2,2,5-Trimethylhexane		384.0			7	

Table 2. CSP's in the systems of nitromethane with alkanes.

respectively the values of P corresponding to 6.023 $\times 10^{23} \, \mathrm{C}_i - \mathrm{H}$ and $\mathrm{C}_i - \mathrm{C}_i$ bonds.

According to these authors, and by excluding the terms which concern methane and ethane, it can also be written:

$$\begin{split} P &= n_{12} \, P_{12} + n_{13} \, P_{13} + n_{14} \, P_{14} + n_{22} \, P_{22} + n_{23} \, P_{23} \\ &\quad + n_{24} \, P_{24} + n_{33} \, P_{33} + n_{34} \, P_{34} + n_{44} \, P_{44} \end{split} \tag{3} \\ \text{where} \quad P_{ij} &= p_{ij} + (4-i) \, p_i/i + (4-j) \, p_j/j \; . \end{split}$$

It seemed interesting to us to check the applicability of Eq. (3) to the temperatures $T_{\rm max}$ of the MG's in liquid binary mixtures formed with a fixed component and a series of alkanes: in fact a favourable result would mean an improvement towards

predicting the position of the MG's in systems not yet investigated.

It is obvious that, in order to evaluate all the nine P_{ij} parameters in Eq. (3), it would be necessary to know the $T_{\rm max}$ values corresponding to at least nine different hydrocarbons having suitable structures, while in the alkanes we used, some kinds of bonds were missing. However, assuming the $T_{\rm max}$ in the mixtures of MeNO₂ with n-Hexane, n-Octane, 2-Methylpentane, 3-Methylpentane, 2,2-Dimethylbutane and 2,3,4-Trimethylpentane to be exact, and, as a first approximation, the dependence of $T_{\rm max}$ from $n_{\rm C}$ to be linear in the mixtures of MeNO₂ with n-alkanes, numerical values could be obtained for the fol-

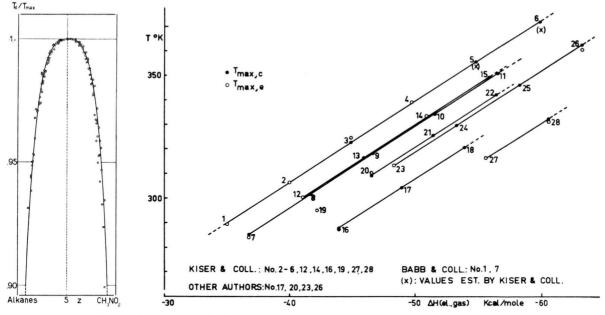


Fig. 1. Plot of reduced temperatures $T_{\rm d}/T_{\rm max}$ vs. fraction z for 13 systems formed by MeNO₂ with C_5-C_9 alkanes.

Fig. 2. Plot of calculated and experimental $T_{\rm max}$ values vs. ΔH_{298} (el., gas) for systems formed by MeOH with $C_5 - C_{10}$ alkanes (as for the serial numbers, see Table 3).

lowing parameters: P_{12} (+178.9), P_{13} (+121.2), P_{22} (+5.9), P_{23} (-53.6), P_{33} (-114.3), $3\,P_{14}$ + P_{24} (+191.1).

Availing ourselves of the above values, we obtained the following results for the remaining systems (c = calculated, e = experimental):

$MeNO_2 + Isopentane^9$	$T_{\mathrm{max, c}} = 367.7\mathrm{^{\circ}K}$	$T_{ m max,e}=369.4^{\circ}{ m K}$
2,3-Dimethylbutane	370.5	369.4
n-Heptane	381.4	381.0
2,4-Dimethylpentane	377.6	376.6
2,2,4-Trimethylpentane	379.9	377.8
n-Nonane	393.2	393.8
2,2,5-Trimethylhexane	385.8	384.0

A similar calculation has been carried out also for the systems of MeOAc with alkanes, investigated in Note I 1 . By using the $T_{\rm max}$ values concerning the mixtures of MeOAc with thet same six hydrocarbons already considered in the case of MeNO₂, it has been found: $P_{12}=+103.6$; $P_{13}=+70.8$; $P_{22}=+6.9_5$; $P_{23}=-27.5$; $P_{33}=-62.6$; $3P_{14}+P_{24}=113.5$. For the remaining systems it has been calculated:

MeOAc + n-Pentane	$T_{\rm max, c} = 221.1{}^{\circ}{ m K}$	$T_{ m max,e}=220.6{}^{\circ}{ m K}$
Isopentane	217.7	217.2
2,3-Dimethylbutane	220.6	218.9
n-Heptane	235.0	235.1
2,4-Dimethylpentane	228.2	227.6
2,2,4-Trimethylpentane	227.6	227.3
n-Nonane	248.9	248.2
2,2,5-Trimethylhexane	234.6	235.5

⁹ As for the (MeNO₂+Isopentane)-system, T_{max, c} is 367.7, in satisfactory agreement with our experimental result (369.4), while A. W. Francis ⁴ tabulates 305.5 °K.

¹⁰ A. L. Babb and H. G. DRICKAMER, J. Chem. Phys. **20**, 290 [1952] (data at 7 atm.).

¹¹ R. W. KISER, G. D. JOHNSON, and M. D. SHETLAR, J. Chem. Eng. Data 6, 338 [1961].

No	Alkanes	ΔH_{298} (el., gas) ¹³ Kcal/mole	$T_{ m max,c}{}^{\circ}{ m K}$	$T_{ m max,e}{}^{\circ}{ m K}$	Ref. for $T_{\rm max,e}$
1	n-Pentane	-35.00	290.0	289.3	10
				287.5	11,14
2	n-Hexane	-39.96	306.3	312.1	10,14
				306.4	11
3	n-Heptane	-44.92	322.6	324.4	11
4	n-Octane	-49.88	338.9	338.9	11
5	n-Nonane	-54.84	355.2	353.2	11,15
6	n-Decane	-59.80	371.5	368.2	11,15
7	2-Methylbutane	-36.70	285.3	283.9	10
8	2-Methylpentane	-41.66	301.6	_	
9	2-Methylhexane	-46.62	317.9	_	
10	2-Methylheptane	-51.58	334.2	_	
11	2-Methyloctane	-56.54	350.5	_	
12	3-Methylpentane	-41.03	300.0	300.4	11
13	3-Methylhexane	-45.99	316.3	_	
14	3-Methylheptane (or 4-Methylheptane)	-50.95	332.6	333.4	11,16
15	3-Methyloctane (or 4-)	-55.91	348.9	-	
16	2,2-Dimethylbutane	-43.98	287.9	287.4	11
17	2,2-Dimethylpentane	-48.94	304.2	313.2	5,14
18	2,2-Dimethylhexane	-53.90	320.5	_	
19	2,3-Dimethylbutane	-42.18	294.4	293.6	11
20	2,3-Dimethylpentane	-46.51	309.1	310.2	5
21	2,3-Dimethylhexane	-51.47	325.4	_	
22	2,3-Dimethylheptane	-56.43	341.7	_	
23	2,4-Dimethylpentane	-48.32	313.2	313.2	5
24	2,5-Dimethylhexane	-53.28	329.5	_	
25	2,6-Dimethylheptane	-58.24	345.8	_	-
26	2,7-Dimethyloctane	-63.20	362.1	360.0	5
27	2,2,4-Trimethylpentane	-55.60	315.8	316.2	11
28	2,2,5-Trimethylhexane	-60.56	332.1	330.7	11

Table 3. T_{max} values in systems of MeOH with alkanes ¹².

For both families of systems the agreement between calculated and experimental $T_{\rm max}$ is satisfactory.

3. Finally, in order to confirm a wider validity of Eq. (3), the mixtures of methanol (MeOH) with alkanes (for which, among other data, two reliable series of measurements by Babb et al. ¹⁰ and by Kiser et al. ¹¹ are available from literature) have been considered.

Availing ourselves of the following empirical parameter values: $P_{12}=+128.7$; $P_{13}=+90.2$; $P_{22}=+16.3$; $P_{23}=-23.8$; $P_{33}=-66.4$; $3\,P_{14}+P_{24}=+159.2$ the $T_{\rm max}$'s for the mixtures of MeOH with the initial terms of the families consti-

tuted by the n-alkanes, 2-methylalkanes, 3- or 4-methylalkanes, 2,2- and 2,3-dimethylalkanes, and also by 2,4-Dimethylpentane, 2,5-Dimethylhexane, etc., and by 2,2,4-Trimethylpentane, 2,2,5-Trimethylhexane, etc., have been calculated. The results are summarized in Table 3, while in Fig. 2 calculated and experimental $T_{\rm max}$'s (once more in a rather satisfactory agreement) are plotted vs. a "structural" property of the alkanes, i. e. ΔH_{298} (el., gas) 8.

4. As a conclusion, it seems that a reasonable validity is to be attributed to the hypothesis that the $T_{\rm max}$ values in the three above considered families of systems obey an additive rule (at least as a first approximation, and when $5 \le n_{\rm C} \le 9$ or 10).

When data by BABB et al. and/or by KISER et al. are available, the data by previous authors have been neglected.

¹³ Heat of formation at 25 °C calculated by Tatevskii et al. (loc. cit.).

¹⁴ Value not drawn in Fig. 2.

¹⁵ Estimated value (by Kiser et al.).

 $T_{\rm max, e}$ refers to 3-Methylheptane.

The investigation of more families of systems containing hydrocarbons is in progress.

Acknowledgments

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research. The apparatus was partially built with the financial aid of the Consiglio Nazionale delle Ricerche (Rome).

Miscibility Gaps in Fused Salts

Note III. Systems of Mercury Halides with Alkali Nitrates *

Cesare Sinistri, Giorgio Flor, Paolo Franzosini, and Mario Rolla

Institute of Physical Chemistry, University of Pavia, Italy

(Z. Naturforschg. 22 a, 53-58 [1967]; received 1 October 1966)

Molten mixtures of $HgCl_2$, $HgBr_2$ and HgJ_2 with alkali nitrates have been investigated. Two liquids regions occur in the following systems: $HgCl_2 + (Li, Na)NO_3$, $HgBr_2 + (Li, Na, K, Rb)NO_3$ and $HgJ_2 + (Li, Na, K, Rb, Cs)NO_3$. The ability of demixing progressively increases in the sense $Cs \rightarrow Li$ and $Cl \rightarrow J$. Moreover the composition squares of the systems $Na, Hg/NO_3$, Cl and $(Na, K, Rb), Hg/NO_3$, Br have been partially drawn.

Following our previous work on liquid-liquid (LL) equilibria in molten salt mixtures, in the present paper we have investigated the occurrence of demixing in type Me, Hg/NO_3 , X systems, where Me = Li, Na, K, Rb, Cs and X = Cl, Br, J.

Little is known in literature about such systems, which are formed by salts predominantly covalent mixed with salts predominantly ionic. Bergman 1 has studied the behaviour of some mixtures of ${\rm HgJ_2}$ with (Li, Na, K) ${\rm NO_3}$. He found that the solubility of the first salt is particularly low in molten lithium nitrate. More recently Guenther 2 has performed distribution experiments between the two immiscible salt phases in the system ${\rm HgBr_2} + {\rm LiNO_3}$ at $254~{\rm ^{\circ}C}$.

Apparatus and Materials

The apparatus used is the same already described in Note I³: however it has been found expedient to keep the Pyrex test-vessels immersed in a fused salt bath, rather than in an air bath.

All chemicals used (C. Erba, Merck or Light) were of reagent grade purity and were carefully dried before use.

Results and Discussion

a) $MeNO_3 + HgX_2$ mixtures. In Fig. 1 the LL and SL (solid-liquid) curves of 15 mixtures $MeNO_3 + HgX_2$ are shown. They are principal diagonal sections in the composition squares of the corresponding Me, Hg/NO_3 , X systems. In Fig. 1 the empty circles represent experimental data, the filled ones extrapolated data (in the way specified later on). The areas in which LL equilibria occur are dashed.

As regards mercury chloride, demixing occurs in the mixtures with lithium and sodium nitrate, the extent of the miscibility gap (MG) being larger in the first case. In the mixtures with potassium, rubidium, and caesium nitrates a eutectic and, respectively, the congruent compounds (RbNO₃)₂·HgCl₂ and CsNO₃·HgCl₂ are formed.

As regards mercury bromide, demixing occurs with lithium, sodium, potassium, and rubidium nitrates, the MG being the largest in the case of $LiNO_3$. In the $CsNO_3 + HgBr_2$ system the formation of a eutectic occurs.

Finally, as regards mercury iodide demixing occurs with all the five alkali nitrates.

^{*} Work carried out with the financial aid of the Consiglio Nazionale delle Ricerche, Rome.

¹ A. G. Bergman, Z. Anorg. Chem. 157, 83 [1926].

² K. F. Guenther, J. Inorg. Nucl. Chem. 27, 1427 [1965].

³ C. Sinistri, P. Franzosini, A. Timidei, and M. Rolla, Z. Naturforschg. 20 a, 561 [1965].